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Th utimate distribution of enr
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Vltmatlymatrelatively Uarge distances from the source, te ssm
simlarty etwen heblast waves from all explosions. Vrosatoshv

demonstrated this mathmatically, but have not drawn atnint h atta
thei~r results are not entirely compatible with the classical hypothesis that,
ultimtely, blast waves beccom ls" and less aware of the nature or the
explosion and tend to depend only on the magnitude of the energy release.

The same hypothesis has been used to derive atmospheric scaling laws, which
therefore need alternative :interpretation if the hypothesis is found1 to be
tfase.

The ultimiate flow behind a deay~ing spherical shook is studied here from
this point of view. It is conoluiled that tOe classical hypothesis is foas,
and Is nt etioaL to the mthematical similarity. It has been shown

noeer tat it is also not essential to the atmsospheric scaling rule.

The theory developed in rming these conclusions suggests that the flow
behind a spherical shook is divided into two parts by an inner sphere, much

* that the flow within this sphere has no influence on the decW of the shook.
The excess energy in the outer part increases indefinitely in proprtion to
the shook radius, and that within the inner sphere must therefore correspondingly

* decrease indefinitely since the total extess energy must remin finite and
equal to the energy released by the explosion.

A hpothesfis is suggested, in an attempt to obtain a high~er order
asymptotic solution, for the blast wave, than the we3.-imown form given by
previous authors. This solution is compared fully with experimental
observations.
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It has long been known tLat, far away from the origin of explosion, there
is ultimately sme siilarity between the blast waves from al explosions,
whatever the sore and nature of the energy release which originaly Initiated
them. Bethe [I] first showed that, if R is the radius of a decaying
spherical shook, then, as It * - the peek-overyresaure behind the shook
ultimately be)q vea 8A (. lo g F "', the ftratio. of positive overpressnue
behaves as logs R, and the impulse per unit are^ in the positive ovesrsm
phae behaves as R'. Kizriwood ae Brinkley [2] developed a theory covering
the vhole course of an explosion, based on a physical asumption about energ,
which led to the same asymptotio form for lrge values of R. Later,
Whtham (3)] re-derived Bethe' s reauts by an alternative approach, aimed, like
Bethe's mnthod, at correcting the imperfeotions of the 'acoustia' solution of
the problem of a decaying shook.

Both Bethe and Kizkood and Bri~*ley define the energ of the shook wave,
as it orosses the .phe.e of radlus R, as the nett work done on the
undiattwbed. atmsher exterior to the sphere Rt. But only by making
assumptions about the motion in the negative phase of the blast wave, and thuA
assessing effeotively the final nett smount of work done on the undisturbed
atmsphere external to the sphere of radius R, do they reach the oonolusion
that this nett energy tends ultimately to ace as lo-4 R when R is laV,
thus indioating a very slow final disuipation of energ, a result first derived
bye Penney [ iI]. None of thene authors has, however, drawn attention to the
difficulties associated with oonsiderations of the imediate energ
distribution behind a decaying spherioal shook. If, instead of considering
the total nett work done on the undisturbed atmophre.external to the sphere
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R, the development of thih .mnerg with time is considered, it is found, at
once, without an assxptions ooncerning the negative phase, that the work
done, up to the end of the positive overpressure phase, on the atmosphere
originalsy outside the sphere R, behaves as R when R is large, and thas
Increases indefinitely as tt increases. This Is a curious result, an,
despite the fact that such a curious energ situation must be restored 17 a
negative phase, it is of the greatest importance to an understanding of
explosion phenomena (partioularly as applied to target response) to exaine
the consequences of auch an anomalous energy distribution. Whitham [3 does
not deal with energy oonsideratiors, but in a later paper [12] he mentions a
similar snomaly, namely that the eass flowing from inside the sphere R to
outside the sphere R during the positive overpressure phase ultimately behaves
as R, and thus necessitates the existence of a negative phase in which it can
return. The anomaly does not exist in plane one-dimensional flow; in this
ease the excess energy in the positive overpressure phase tends to a finite
quantity as R increases. In axially symmetrio f lj, the excess enera in the
positive overpressure phase behaves ultimately as IF when R Is large.

In the absence of ar real attempt to face up to the difficulties of a
positive overiessure phase containing an indefinitely increasing amount of
energy, continuing appeal has tacitly been made to the classical kypotheais of
explosion theory, namely that, for large R, the motion behind a blast shook
becomes dependent dominantly on a finite quantity of energy associated with
the energy released 1W the explosion, and less and less on the nature and mode
of the energy release. The asuptotio results described above would orly be
compatible with such a hrpothesis ift the energy in the positive ove presure
phase tended to a finite non-zo amount for large, sinoe, as will be shown
in this paper, the decay of a spherical shook is determined entirely 1v the
motion in a limited region of flow Just behind the shodc, not much different
from the positive overpresumwe phase. The 1ypothesis is therefore now
believed to be false.

This same classical hypothesis has been used y SachsE 13] to derive
atmospheric scaling laws though the same scaling laws were derived
previously to Taylor [1Z, close in to a very intense explosion (of. 103 on the
different hypothesis that the total excess energy within the spherical shock
is conserved. The present author [10] has shown that Sacha' rule for
atmospheric scaling can be derived, and generalised, without appeal to the
classical energy hypothesis, and that its practical usefulness is not therefore
nullified by the falsity of the hypo-hesis. Instead, Sachs' rule is seen to
be not an aqymptotic law, as first derived, but a rule for the 'idle-
distance' which is of far greater importance in practical applications.
Taylor's derivation of the atmospheric scaling rule, close in to a very intense
explosion, also nee';& further consideration, since the high temperatures
associated with the hiph energy release per unit volume of a very intense
explosion imply a high rate of loss of energy from the system within the
spherical shock to thermal radiation (of. 15]. The derived atmospheric
scaling rules eay therefore only be expected to apply approximately, under the
conditions of Taylor's similarity solutionp over ranges of R in which the
energy lost to the eystem by thermal radiation is either all compared with
the total energy of the system, or scales consistently with the derived
scaling rules.

In the present paper, the equations of unsteady on-homentropic
compressible flow with spherical *vmtry are reduced to charaoteristic form
(section 2), in terms of variables which are effectively the Riamann functions
for the eorresponding plane flow. The boundary conditions at a general
spherical shock front are derived in the same variables (section 3) and an
iterative solution is developed. This method of solution was developed
independently, Wt was found later to be similar to that used y Baethe (1],
althouh the present solution is carried further than Bethe' solution.
Ener ' and impulse considerations are introduced (section 4), to derive the
limitations on the form of the shock decay', anl the results derived are in
accord with previous results described above, but are taken to higher order
approximatinns. The existence of' a limiting chazoter'istic or wave-front,
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behind the leading shook, is demonstrated (section 5), e was also done
previously by Whithm, namely the firt postive charceritic which fails
overtake the shook in finite d istane. This mrk the raer t what is definod
here as the shook decay phase of the motion, for it divides the flow behind the
shock into two parts, a spherical anu lus (between the shook and the limiting
characteristic) which alone controls the decay of the shook, and, inside it, a
spherical region which cannot influence the shook decay process. The previous
results (of section 4) then show that, although the total excess energy within
the leading shock is always finite and equal to the energy released ty the
explosion (lean possible radiation losses), its comonent., in the two regions
defined above, respectively increase and decrease indefinitely in proportion to
R, when R is large, and thus contradict the classical hypothesis that the flow
in the shock decay phase immediate y behind the leading shook Is determined
dominantly by a finite quantity of energy.

The difficulties of obtaining a higher order approxim tion, without
recourse to hypothesis, or to the flow conditions behind the shock decay jhasep
are introduced (section 6), and a hypothesis for a higher order approximation
is suggested. On such a hypothesis, the ultimate form of the pressure-pas
In a blast wave is derived (section 7); the higher order results from the
hypothesis are compared with experimental observation& (section 8), ed show
promising agreement. Nevertheless, even if these higher order results are
ultimately fount to be sound, they do n3t apply, with practical accursy,
closer in than about 20 ft. from a nne-Pound oharge of conventional explosive
at sea-level, where the shock peek overpressure is about one-sixth of an
atmosphere. It still remains true, therefore, as stated W Bethe [I], that
"there in considerable danger in using these relations for moderate premmnes
where the pulse has not yet reached its limiting fore.

The real practical problem of explosion theory therefore remains, namely
to provide a consistent and comprehensive working solution for the 'middle-
distance' of moderate peak overpressures. For it is in the 'midd4le-distanoe'
[of.16] that the critical conditions of target response generally occur.

This paper, then, makes no contribution to the really important practical
problem, except in so far as it seeks to impove understanding of the ultimate
asymptotio form of a blast wave, which must, of neoessity, be an end-condition
for the 'middle-distane' problem. It is clear that a proper understanding of
the end-condition is a necessary yreliminary, in sq case. It ma, or ray
not, provide the key also to a useful approach to the more practical problem.

2. Unsteady non-hoentropic flow with -shericel jwtg

The equations of motion of the air behind the leading blast shook in a
spherical explosion, in regions where no further shocks occur, arel
from the conservation of momentum,

t* Uur+z/A N 0; (2.1)

from the conservation of mass,

At + ur + ur + UD/r . 0; (2.2)

and from the oonserv ,tion of energy

Pt + Upr " a, (At + Ur). (2.3)

p denotes pressure; A, density; a, sound-speed; u, particle velocity; r
denotes distance from the centre of spherical saymetry and t, time; suffixes r
and t denote partial derivatives; and air in asnmied to behave as an ideal
polytropic pas, with equation of state

[z. = r}pl [ GP (S--% (2-4)

and souna3-peed a u (yp). (2.5)

4 t



*5 den.otes entropy, or Specific heat at constant volume; and Y, the ratio of

specficheas a costat pessure wid constant volume. rempetivoly, nmntl

aoitoA in the unlistuz'bed uni~form atmospere at rest. In @Mitin

OTm v- (2.6)

P.~ (2.7)

W= Ot is a constant, wAn 0 enotes absoluate temperture.

Pw~hmnt.1 nits a"e now chosen, defined tr the three quantities, atmspheric
pressure p0 p atmspheric oont-speed so ant an arbitrary length L, and the
following notation Is adopted,

ta PO V
0

i-e. in iener3. X a P/tPI , *5h P denotes szv Physical Twantr ant (P] is
that combination of the fundamental units which has the same dimensions as P.
In addition, the convention is &A4pt--d of writing I w (S - 30)/. With this
notation ant using (2.6), (2.94) a (2.5) my be written

* -' 0-s.(2.8)

Y ASA -/(Y ) A ~ (2.9)

The equations of motion, (2.), (2.2) and (2.3), mo raw be written in the nsw

roationt an p, D r be e~iminated from them ty mens of (2.8) an (2.9).

-7 -8 0 (2.10)

2 .0 (2.11)

At+ * 0 (2.02)

In which k' *(y -i)/(y. i).

Noew Aependont variables a and ,9 are ra chosen instead of ui and a, such that

31 ( 0 )MR -p), (2.13)

or, alternative~y



2).S 2(1 (216

fro wichitmybe amo that a e dar , effectivel, heRimafntins

thicree consitant of on o baateriuti lines in he ( dy t)- l ae Alonte postv

*i a-.a-( -a).')p#]t, (+ + +
the ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ I wnemeit 0neps (2aio-17)ii~ifm(21)

li~p t + 0 ~p]A( *.tmp) 0M,. (2.219)

carncthernestivie os oeitoln.

the Intermediate Integral relation satisfied is, from (2.18),

Ua + j ,a . d + +).(a + )] a . (2.21)

Analong the aiv rl acties tile ps, i h r )9ao

the ireiat Integisl freaio (2.1 ie9), ro (*1

S 0 constant. (2.25)
3. The decoring spherical dhook

Then the leading bleat shookc from a spherical explosion has reached&
distances large ompared with the mize of the explonive carge, or %ton the
peek overiwesure lonedately behind It is smll akaxe4 with the unditred
atmospheric pressane, It is pertinent to ask whether the actual conditions
under whioh the energy was relesmed by the 'detonation' ontince to hare ewz
Influence an the way in which the shook decays, or whether, in fect, the process
of decay tend. to capeis loe aloss, on the exact nature of the energy
release. The answer to this question entails, the study of an inoayloto~y



fornilateG problm In which the governing equationa ae those of section 2
above, an the relevant budry conditions are +hose at the leading bat
shook, an the n-oordition that the shook ultimately Gdays to son strength
as its r ius increases indafinitely. The problem is to draw conclusions
froz this data only, witout recoue to the initi. co ition of the
detonation, or any. other conditions, at azv time, at bownAsies nere to the
centre of the explosion then the leading shock,

Let the position of the leeding bast shck at &W time be denoteGd I the
equivalent relations R a R(t) or T a T(r). In the notation of section o
shve the tiae-development of the leading blast Mok my be denoted re

T . TL), Mn it Is convenient, when the leading shook Is week# to write this
reltion In the form

mhee O() is an unorAen function of R, to be determined s far as is possible.

Then from (3.0. If dashes denote Gifferontiation with resct to

0 X (3.2)

is the Mach umber of the shook In toerm of the speed of scuM In the
Undisturbed asmlhere, eMd Uts, for a week shock,. is In=al ooqisred with
unity* The shook conditions, giving the state of the air imsediately behid
the blast shock, are (see. Vor WCMnple L', oPP. 71. 75).o

z? 1 + V) (it -'I 0 t

u • U

y I -

substituting for N, fro equation (3.2) the following reslts are obtained,

2 + 2(1 1').' + 3(1 ) )', + O(e")

* 2(1 - +.' * (1 " ) * o(.")

= 1 * 2(1 - +'. (3 - IO')(1 - ?'}.'. * o(e")

a 1 2f' * Xt el + ( *3 ) ,

ame, ho (2.15), (2.16) an (2.4),

a a 71-F. 260 '1+ .hl l)

't . 00.2) (3.,)21,r 2(1-1

A o(e"). +

These st the required form of the leading shook boundary o1ditions In the
notation adopted hi".
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The en-ou8tin that the shook tends to amr strength as the shook-
radius increases indefinitelby, Is given IV,

1w- 4g V -0

The problem then is to find, se far as Is possible, the solutions or the
govern~ing equationls, expressed chrceisial in (2.20) to (2.2p),
satisfying the inoqlets net of boundary oon~tio( .) a (3.6). & Uoh
solutions will appoy to the air-flow ijunedlately behind the leading blat shook,
so far as no further shooks, occr :in the flow.

The method of solution adopted here moy be described as one of 'anslytio
iteration'. I t wan fount ultimately to have been yearoed and used
previously to soams extent by HA. Bethe fili Whithen 12] has adopted a
different method of solution. Both methods are, in fact, devices for
Improving on the grose imperfections of 'aoonstio' solutions to the problem,
which fail on account of the divergence of the characteristics at IntimitV in
the proper solution.

it is proposed to seek a solution only so far as second order terms In VD
at most. Sine 8, at the leading shok is, by(3-5), onVof the orderof 613
and is constanxt @716g world-lines iftie slope Is of order @*, it follow that!8
in of the order *1 at all points of interest ant my be neglected so for an a
solution to macod order terms in of Is concerned. Since, moreover, IV (3.5),
0 Is only of order #1" at the leading shock, whilst a is of order V&. a first
appuomation to eqwtion (2.20) is

d(azt) a 0.

Mhs is the approximaation introduced by Beth. I i], wa gives

a? a constant a 2 44 1
or a.a 2e so, (3.7)

on the positive ohaateristic which overtakes the liniting shook at 0 (iur.
1). Using this result, a first approximtion to the equaation of the positive
characteristic (2.2D) Is

givipg, 1v integration,

* t.- 2 t~o'_ U u % - 2* ! og!, (3.8)

for the positive oharacteristic which overtakes the leading shook at 0.
EX.&. All loonrithms ae natuAl logarithm to base 0-1

The negrative charaoteristio (2.22) which Intersects the lesding shock at A
(rigare 1) Is, to a first approximation, simply

r* t PA + 2 11A 4 (3-9)

if the characteristic which meets the leading shock at 0 cuts this negative
characteristic at A, then, at D, to the saws ordar of scoura~,

2~ ~ 2 A+@A 2 ; logr. +, -2 to16los 6 3-0



Along this negative chamoteritio, therufore,

2  -  2lox R(eU)1 - + MOM ordIer tftv (3.11)

ty differentiation with respect to 16 keeping PA oonatant.

A first appdoxiation to the intumtate integral ration (2.23) Is

or a

uenoe, ty IntegmtIon, ant usiig the boudary ondition (3.5) an A at the
leading s*ock

/ r from (3.7)

Ia --

RA

R

r

eA [2 log RA Rd101

[A

•.(, -g)' (log ra -lo - o*) , (3-.2)
RA

('s log (lo,& + higher. order teima (3.13)

8.



With these results the Wale ma be repeated to a higher order of aocurays
Thus a better approximtion to the relation (2.21) Is

or d(ar) *C.(i - e)a'J

givins

I V2 g o e0 ) ( 1 0s [ 1 O 50 9

ne-s

giving

R u *j-(og #,n 6,B)a10 6 og E 0 2),8 5] (fR)

A better approxiation to the equation of the positive ohaeeteristio which
waste tha4 leading shook atOC is

giving

dr [I {. - -' 2(1-.)@ )'(o -bs (- ___

which integrates to give

to 2 iqa ogI0 -2(3'-2f')*'g, log_% (ij -6)) 2 0



Sinoe , ts given by (3.13) ins only of the same order as the lower crder tems
of given by (3.04), it is not neessaz7 to Inpove the value of P In the nane
wamy. A better approximation to the equation (3.9) for the negative
characteristic which intersects the leading shook at A is, from (2.22),

_ . (I - 2')d3 +t w 0.

Usib the results (3.1) and (3.11), this leads on integration to the equation

1" ; - 1 - 2 V) ( cc' ( log 1 o - log r ) a 2 R A " ( 1 )

T required solutior. are, therefore, given by the four relations (3.13) to
(3. 16), but it still reains to examine what restrictions, if a , re anposd
on the, as yet, uV~nwn function a(), with the help of the end-condition,
e') - 0 an j -.ek. hich has not ye been used.

4. Rxoeas ener=y and Iimlee ver unit area

From the solution for the decaying sphr -ioal shook given In the last
section, it is possible to calculate the impilse per unit area of the flow
behind it, at least as far behind it as the flow is free from further shocks.
Thus (see Tigure 1), the impulse per unit area at a distance RA fro the
centre of the explosion, from the time TA at whoh the shook reaches th:4s
distance up to the time tD when the positive characteristic through 0 reaches
this distance, is given by,

I /T (p -p) dt

oro

Now simes D is on the positive charateristic which meets the leeding shook at
C, IV (3.15) or (3.8)

JA _.D- 411 lg g e- 2 to'B.log R

*higher order terms (4.2)

and, therefore, differentiating with respect to R keeping R. constant,

a% (VE ' o _Rc) I-2(,)' RO( log + higher order tem. (.)

The relation (4.) my now be integated as follow:,

/TA

10.



* [i .x2(a. +~~ ~ - i ty (201I4).

!A

z . [(i )s) +~ ...]~j by (3.131 and (3.11)
+ 'A(1

Tha
+ a(+ ' -~~lg .lg )h rrstra 2(44og I)

BA 
b

This is a result of great Importance, for it allows, at last, some
oonsideration to be given to the possible forms ot the wnoiown function owl

b examining w1at happens to the impulse per unit area 1, given I (4.), am
the point C on the leading shock tends to ininity.

Pirat, in order to proceed at all, it is necessary to neglect the
possibility of having an infinite muber of ehodko, behin the leading shook,
which overtake it. In the absence of such an infinite array of aseoondary
shocke, it follows that, for all values of R peater than soem P, there is a
finite region of shock-free air-flow behind the leading shock. It may be
remarked here, in su ort of this assumption, that obmervationa do not show axa
secondary shocka at .1 which overtake the leading shook.

There are then three possibilities for the form of the unknuwn function

First, if e(A) were a function such that

as R eoo logaslo!

then, by (4.4), the U.. lea per unit area in the air-flow behin the leading
shook would also tend to Infinity at scme finite vubsequont time, at a. large
distances . For (see Figure 1) sar further shook which intervened at a
time tD, COrreaponding to IL positive characteristic meeting the stock at a
finite point C, mist neoesari2y overtake the leeding shook earlier than the
point 0, ant this is a possibility which has already been neglected. The
pomllbility that to Ra log , * , which leadl to infinite positive Iqulses
per unit area at finite ditanceo, is also negleoted.

11.



second, ift(l were a function such that

then~ the function

wol be sawe for Bo M A
positive for o)_R

and would * 0 as 1

it would therefore he a mxdmn at some finite value g.However, it'

(e),at the point D. corresponding to 0j,

to the order of equation (i4.3). since %2 Bl(log Bo- log PA) has a ndi

value at D, and beyond Ds, &dd~ would becaengtv. Ti osblt
is therefore also neglected.neai. 

ThspsblV

There rovisins, theng only the third1 possibility that ICRJ is a fisnotion

suoh that,

an& 6" eR8 log -6. a finite non-seo quantity, my k1/4.. (4..5)

Then, as &

---- k(4,A.)

2 a gI.K

and it in seen that this possibility is consistent with the end-oondition that
el 0 as A -* g. With thisa possibility, the expression (44 for the impulse

per unit axeies msa

2R +1 * ~ hirodrte (4-.8)

and thus as R

BA (I + W)k8/2.(,)

Turning now to considlerations of the energy in the air-flow behind the
leading shook, the energy transported across the Nirface of a given sphere
rm RA from the tie TA (igur 1) at which the shook reaches this sphere up to
the tine tD when the Positive characteristic through a reaches this sphere,
consists of' the energy of the mss transported across this spheres together
wirih the work done at the sulrface Of the sphere by fluid inside the sphere at -

mar time on fluid outside the sphere at sw time. It is thus given by

12.



3, U Wud

TA

or

X.r 2" [- " + '  "/e) to"N+ )]"% d. (A..10)
%a&

The Integmtion my be p fovm w im-thods similar to those used for
Intemting the eqarea"on for 1, anip without repeating the detaila, the remt
Is

+ higher orde tea. (11)

Thus, t, (..5), a *

a r i X4) D (&.12)

and me the prisuing reult thato

*A *". I, A',

in mh a way that

;A - kr(1 -

AJlternatively the enmv 3' shoulA also be equal, to the =omes snerv at
the tui, tDI over and above the atmonyb.rl, eners preaent before the arrival
of the blaat, oontined In the pherico.1 mnusl between the leAd dodl

r.m hA, , ad the sphee r m rD (see Pi.o 1). This xooe, ens, ova
atmoaphera is #ivm IW

3 " " 2 3(y. , I..

D

or

a a ~ ~ sj.I + i~V i -UYz (J.11.)
IrDR

'3.



Again, the integration may be performed by similar methtda to those used
previously, after deriving an expr asion for ddQ along A' (Figure 1), and
the result Ia

A, to, Do - j

+ higher order teamu

in areemnt with (4.11).

The arguments applied to the positive icpae per unit area 1, (4..), in
order to determine the most prbable form of the function *(R),ooai, of oour-ns
have been applied e ,LU7 well to the energ yB.

5. The lJaitirm positive ohaaterietlo terminating the sho-ck.eme case j
Ie air-flow behind a blast shook

In this aeotionsame further oomqienoes of the restriotions, (4.5),
(4.6), (4 .7), placed on the function R() in the previous section, are
examineds

%nder these restrictions, the equation (3.5) or (3.8) of the Positive
characteristic wdich overtakes the levding shook at 0 reduce& to

r -t - k log dlog' Be hisgher order terms a XK+. (5-1)

In the limit asR * - then, this gives (of. 3.15), for the limiting
positive characteristic which just fails to overtake the le-Aing shook in
finite distance, the e(ation

r - t + k'( - 2)/2 K. (5.2)

This My be ompared with the result obtained by Whitham (3) for the
limiting characteristic, namely, in the present notation,

0-. (log De) . K. (5.2a)

The mettod used here appeara to show that the tem of order log JA
envisaged by Whitnem has, in fact zero coefficient, nd that the next
surviving term is only of order ir, and is determinable t the method used
here.

This limiting charateristic (VW in Figure 1) divides the whole fluid
flow behind the lea lin shock into two parts, of important significance. For
the flow behind the 31idting characteristic VW cannot exert ay influence at
all on the shook decay process, othefwise than through the medium of a l.ock
overtaking VW. but ar y shock which overtakes VW mst overtake the leading
shook in finite distance, since its slope muat be greater at ar point, then
the slope of the positive characteristic there. The possibility of an
infinite umber of such shocks has been ruled out, and attention is being
confined to distances greater than that at which the last of such secondary
shooks, it anry, overtakes the leading shoock.

Hence no flow behind the limiting characteristic VW can influence the
shock decay process, and the shock decay process is therefore controlled
entirely by the flow between the leading shock AC and the limiting positive
characteristic VW. This part of the flow will be called the shook-decay
phase of the blast wave.

The equation (3.1) *f the leading shock is, by (4.7),

ST+ k logl higher o.der terms. (5.3)

14.



The peek ovexk. seure immnediatelyr behind the leading shook in, Vy (i.6)
Vi ) l +oX hiherode tme (-e

- & log. !

The duration of the thock-deoay phase at r a RA (AZ in Figure 1) Is given

Z, . .

. , ks(, - )')/2] - _T*

we . Is on the limiting characteristic (5.2).

Mhe, 1W5.)

ZA s kingg A..hiher order terms.(.)

Behind the leading blast shook# the particle velocityq Is, ty (2.13), (3.13)
(30.14) and (4 6),

and the overpressur (e - 1) is, t1 (2.8), (2.11.). (3-.13), (3 .t.) and (4.6),

I- k(1 1la)/Z logi rO + higher etez . (.7)

At the limiting characteristio, p Dei1) gives , as &

a possible higher order , (5.8)

aM (3.13) given, as -.

4 + . po able higher order terms. (5.9)

Thus$ at the limiting characteristic, the overy.mmn.,

p-i - (+ %')(e+) +higherorder tm,

Is of lower order tian i/ri,, end the particle velocity is

dinoe, at the limiting chracteritic the OerMresure is not much
different from zer, the sok-deay plase an defined here is relatively not
much different from the rositive overpressure phas of the flow. Howver, if,
in feet, the overpressure at the rear of the shock-decey phose Is still
greater than er~o, it is possible for a seoorday shock, behind the limiting
ch,acteristio, anu never overtakng it, to enter the positive ovexpressure
phase, increase the overpressure and thus prolong the positive overpresue
phase. In explosions from omentional explosives, such a seoondary shock is
obser ed (5, 6] aM Its inception and development have been investigated
(7, 8).



To coulete the results for the shook-decay phase of the motion i t M be
repeated that the irpulse per unit area in the shock-decay phase (t.8) is

_ I . ( I , + g )k s + h i g h e r o r d e e m s, ( 5 . 1 )
2a

and the excess energr over ampherio in the shook-decay phase (4.6) is

,- ,, - higherorder t nm s. (5.12)

6. A polution to higher order of aoouracy

The considerations of section 4 led to the conclusion that the only
estiotion on the function e(!) for a ahericaly decaying shook Is

or e klogflIK.

There m therefore no possibility of detertining the function r
preoisely without appeal to the Initial conditions of the explosion, or to
boundery conditions within the leading spherical shook, or without mking m
hpothesis.

The bounary conditions at the leading shook (3.5) are expesenible an
power series in a' when e Is smaL. On the other hard, the rt rmnts1L
length L is so far arbitrary, and if, for instanoea different length L, wer
used, and R I is written for IVL,

14g it I og* (r]m[logR logf~]

so that an expansion in powers of I/log a would be introduced into the
expre"sions for c and e, I a chane in the fundamental length L.

On this basis, the hypothesis is made that, for spherical explostons, #
may be rep esented 1, a double series of the form

•.k2484%-sIg~i., Iog-"" p. .......

* ......... (6.2)

in which te origin of tien has been chosen so that X 0.

it follows from this hypot esi that, at large distances R, an attempt to
derive higher order approximation than from the first tens ondy of 4, by
includin a finite nber& my t"o, o" bigher order terms, oust be directed not
tovardsa includinrt terms of the order e' and ONB times the leading term but
ruther towards an approxmtion of the for

t.6.4



c a k log _ -ml.og 4 R - 3log" 's. (6.3)

Now L, the fundmental length, is arbitrary, and it follows from (6.1)
that L my be ohosen definitely so that the coefficient m w 0. With this
definite value of L then, the appromination beoomes,

S .og 1i - 1 (6.4)k logs 
J

and all further results given are based on the above hypothesis, and with this
definite choice of L. The expression (6.4) oontains, then, three oonstants,
L, 1, ari k whioh, if the bpothesis is justifiedp should be determinable by
ooep rison with experimental observations.

With the form (6.4), aM negleoting terms of higher order than I/logs R
times the leading tem as well as all terms of order s' or higher, oanared
with the leading term, the results for the shoock-deoey phase of the blast motion
at a distance R m the oentre of explosion are:

S2 Rl_ I 'ogs Rj

Shook peak overpressre (.4),

P -l 1 ) 1 + u, (6.6)

-. 21og*& k log

General~ overpressure in the 1hook-decay Phase (.)

g o "~ J (6.7)

Duration of shook-deo phase (5.5),

k * kL@ . (6.8)

Shook-c4 Impulse per unit area (5.11),

]: k'(1 + X2 )/2a with no term in j log' ]; (R.9)

Equation of positive oharacteristic which overtakes leading ook at 0, (3.15);

Relation between peak overpressure, shook-decay impulse per unit area#, and

duration of shook-decay phase, (6.6), (6.8) res (6.9),

(r'_ -1)! : 211 " (6.11)

7. The form of the ,essure-Alse in a srnerioal blast wave

The results give n in the previous seotion 6 enable an expression to be
obtained, for the first time so far as the author is aware, for the ultimate
pressure-time relation behind a spherical blast wave, at sufficiently large
distances from the centre of the explosion.

17.
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Por, from (6.6), the peak overpreagsure at the shock, when it is at

distanoe FA in

- •1+*A klogs

iiA subsequently, behind the shook, at the same distanoe from the centre of
the explosion, the overpressure is generlly, ty (6.7),

p-1i -+~ J) 1 (7.2)

RA log R-. Ik log a

at a time tD (see Fig re 1) at which the positive characteriatic overtalng the
leading aooc at 0 reaches the distance P.

Since D is on the positive characteristic whtoh overtakes the leading
shook at 0, by (6.10),

k log _o " (7)
.Log* R 1 klog' R- log4 1

whilst if.r is the shoo-deoy duration AZ (Figure 1), by (6.8),

r a klolo-g 1,(7J

arA the relation betweeni ma - at the leading shook is', bY (3.0) and (6.4.),

klo3 logs #a R1 3 log.,_1__R

L - 1L - k)oiR+C

(7.6)
Thus, from (74),

tD- -TA 10 -- +~, 2.r 3  ko log k)o o
g~~ ~ klg~lg clogs RA

(7.7)

whereas, from (7.2) eA (7.1),

p -" +7 ,,, - (7.8)

..og, klol k4logI

18.



Tin", from (7.7) ad (7.6),

- klkog R log Ro

* ~ ~ ~ 4 (i(DD.){ --~~ [iA alll1." k logs R . (79

to the present order of approximtion.

If, in the present context, time is measured fzrn the instant the shock reaches
the raJ-u RA , (79) may be written imply,-,o.

Y" o k lo! (710)

This may be ompared with the wgirioal form first suggested tv Prls

PL Po * . *-e/ (7.11)P-po

C-' with variations on the Friedlandr fom [of. 5, 6) iaoh am

P'o . [1-.ep (7.12)

P - P0  , (7.12)

or0 - uo

In the relations (7.11), (7.12) and (7.M3), o, and a, are oonstants, and T is
'1e duration of the positive overpres"are phase.

To obviate the experimental difficulties associated with the meaur-imnt
of quantities connected with the entire positive phase or the entire shook-
decay phase as introduced in seotion 5, it is oonveniw,,t to define a general
time-interval 7f, after the arrival of the leading blast shock at a given
"adus RA, as the elapsed time at which the overpressure has faflentr e a s f a l e n t o a
traction f of its peak value. The positive characteristic through the
partiuflar Point D, (Figure j) oorepr.n.o~ ~ ~ vrae h
leading shook at the particular point a, satisfYing, t (7.8),

kls k g k" lg o (7.14)

whilst, from (7.6),

If k l 94MA;_ -I + 3 09 log2 ' R.

(7.15) "

Pro (7.14) and (7.15), to the present order of appoximation.

k( f -) logi [ L (I + 2f) (7.16)

1o.



Of partioula interest is the special case when the. fraction f hats the
value f. - ( -1)/2. In this partiular case

(1, 2f) 3 3 (7.7)

and

k(3:, 10- -f .,)

Ja 2 ;(7.18)

so that# from (7.O)

) 21 (7. 19)

&M (6.11) my be written
xx-1): (3 - 'f3) I- (7-2D)

The relation (7.20) appears to be the mo at useful relation of its id#, for
further andvysis gives, in geesl,

ka f 61f$ (721if (A *k l a a E(

as a genelusation of (5.11), aM thus

(21 - -0 (7.22)

as a generalisation of (6.11). It in clear frCm (7.22) that the speoial case
f t m3 has no paticular merit so far as this relation is concerned, and that
there is no other speo lvalue otf (apart frm the trivial exception f a 1)
wich will redue (7.22) to the form

- -.Z u constants

Flinally, the generalisation of (5.12) is obtained as,

8. oCmparison with experimental observations

In order to facilitate omparison with experimental observations, it is
desirable to derive acme further results of the theory in terms of ectal
p]sical quantities rather than the reduced non-dimensional quantities which - •
have been used in the development of the theory.

Thus, equation (6.9) my be written

ksL' . I (8.2 1 Mi.

and equation (7.2) my ie written

ka.,a + LRso(5,1) (8.2)

(1 .) , J,
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in whioh _ - ) . (P - po)/po s the peak overpressure measured inatmospheres and is left in the reduced notation for sin=lieity.

From (6.6) and (6.8)

(P - 1) k 4 a '(i + t)(

and this may now be written

A (gR(1 ,) (83)

Similarly, from (6.8) and (1.18)

U_ (I + 1) ka log R

and this my now be written

A%' (log R log L) w r3 .(
2r,

Eliminating kL between (8.3) and (8.4) gives the result

lo L - log R - Y2 -' (8.5)

Finally, when these five relations have been found to yield consistent values
of k and L, by cmparison with experimental observation, the following three
relations may be used to determine 1j and tuas further assesa the consistency
of the agreement between theory and observation.o

1prom (6.6)
(" 1) R log , si R k log& (I - 0( ' (8.6)

30 + 1) 3

From (6.8)

I a k log'_-log"R, (8.7)

and from (7.18)

k log'
1 + - . .1) losg'R. (8.8)3 313

Potter and Jarvis ( , 6] have made observations of explosions from bare
spherical charges of TVT and RD)VTNZ 60/40 which are sufficiently oomprehen-
sive for a comparison, on the above lines, with the theory developed here,
Their re lts are given in terms of the oouon method of scaling, using a
factor t (W a charge mass in pounds), Here, W is put equal to one pound in
their results, so that, in fact, their observations are scaled to one pound of
explosive at sea-level, and the omqparison in made on this basis. On this
scale, their observations extend from about 4 ft. to 50 ft, from the centre of
the explosion, and their peak overpressure measurements were fitted, over the
cooplete range, by the method of least squares, to the form

P -1 a R +IVRI+/R.

Potter and Jards have, of course, analysed their records in terms of the
usual positive overpressure phase. In the case of IX TNT they observed a
seconary shock which entered the positive phase at about 15 ft. ffrm the



centre of the explosion, and at greater distances their quoted values of

positive duration include a mall extrapolation to give an estimate of what the

positive duration woul have been in the absence of a second shook. Their

values of positive impulse per unit area, however, inolude only the impulse

in the primary wave. The comparison made here rests entirely on the

assumption that these results of Potter and Jarvis may be taken as a good

approximation to values for the shook-deoay phase introduced in the present
theory.

It m&y seem surprising that the results of Potter and Jarvis are
suffioiently oomprehensive to include measurements of T, (7.18). In fact,

Potter and Jarvis have measured, on their records, the time rf, (7.16), for

the fraction f u 1/e. By a remarkable numerical ooinoidence,

2 1 . 2.732 5,

as compared with e u 2.71828, or

(1 + ) 3.0129,

as Comred with (1 + 2rx)' u 3.

The values of rIe ,(whioh they name the 'decay-oonstant'), given by Potter and

Jarvis, have therefore been used as values of Tx.  The author, of course,

disagrees violently with their assertion that 'the choice of the factor Ve is
quite arbitrary, and 0.5 or 0.25 would have been almost as good'!1

Table (8.1) shows the results for one pound of RDVTNT 6D/40 at sea-leveL
Columns (6) and (7) show the two values for kLa given W, the relations (8.1)
and (8.2). Column (8) shows the value of L given by the relation (8.5).
Figure 2 shows the plots of the relations (8.3) and (8.4), on semilogarithmei
graph paper, and the straight lines corresponding to the values k a 0.716,
L ' 3.8 ft. are also drawn. Finally, using these values of k and L, the three
values of 1 given by the relations (8.6), (8.7) and (8.8) are given in
columns (9), (10) and (11) of Table 8.1, being denoted respectively by I(P),
1(r) and l(,r).

Table (8.2) and Figure 3 give the corresponding comparison with the
results for one pound of TNT at sea-level, and, for TNT, the values k a 0.D25,
L a 4.5 feet have been chosen. At the greatest distances from the centre of
the explosion, the observations naturally become less reliable, and the least
squares fit of the mean curve by Potter and Jarvis, being chosen as an
optimum over the whole range of observations, is probably not so good at the
greatest distances, as a best fit over a shorter range of larger distances.
It is not surprising, therefore, that the good agreement shown in Tables 8.1
and 8.2 and Figures 2 and 3 up to distances of about 35 feet, is not so well
maintained at 40 and 50 feet. It appears that the fitted moan values of
(E - I) and I are the least reliable, and amended values of these quantities
are shon in brackets in Tables 8.1 and 8.2 and Figures 2 and 3, to give some
idea of the changes in these quantities which would give agreement with the
theory given here. These changes are quite wall.

Finallj, as an alternative t^ (8.2), the relation (7.2D) may be written
in the form,

(P - p)r,, = (3-VW 1, (8.9)

and thus constitutes an overall check on the hypothesis of section 7, when
tested apainst experimental observations.

The values of (P - pe) T, (3 - -13) I are given in column 12 of Tables 8.1

and 8.2. It is seen that, in both oases, as R increuses, this quantity tends
rapidly and monotonical3y to unity.
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9. Remarks

(a) It needs to be stressed that the hypothesis mde in section 6 and the
consequent results given in sections 7 and 8 are not neoessarily sound, ar
other similar lypotheses need to be investigated before any firm conclusions
can be drawn. From the results given in section 8, however, it is seen that
this hypothesis appears to be in reasonable accord with experimental
observations, purticularly in the sense that the observations used are far
more extensive than the minimim requirements for determining only three
constants L, k, 1, ana yield consistent values whenever the constants are
determined by alternative methods from different types of observation. On
the other hard, the solution which is being compared with experiment is an
asymptotic one, and the vital determination of the constants depends
therefore on the meastaments at large distances, where the observations
are natural3y at their weakest. For this reason the numerical constants
chosen to fit the observations, in section 8, should not be regarded as
determined to any high order of accuracy.

(b) It is of interest to compare the fit with observations of the higher
order asymptotic solution proposed here with the corresponding fit of the
'zero order' solution involving only the leading terms. Kirkwood and
Brinkley (2 et al ], who gave a solution to the whole development of a
spherical explosion by making a physical ansumption, obtained the asymptotic
solution for the peak overpressure from the limiting form of their
differential equations, as the leading teim only of the solution given here,
i.e. in the present notation

P i ki(0 + 7M)P_- - (9.1)

in terms of a fundamental length L , wher Re1 a VL.

The oorrewpordting solution for other quantities to the same order of aooawaoy,
by the methods given here, would thus be

: -------- (9.2)

4

taki logl a, (9.3)

and, in fitting this solution to experimental observations, only two constants,
k, an.' LI, have to be determined. Kirkwood and Brinkley do not discuss the
physi' significance of their length L1, but fit the solution (9.1), (9.2),
(.3) asymptotically to the nmerical solution of their equations closer in,
and thus derive definite valaes for k, and Li. In fact, when written in the
form

• -10+(k L7)(1 ( .Q

Po R (log R - log L,)* (9.,.)

I a o (k L ,) (1 + (9. )

P0  2R

r o  (IL1,)(log R - log ) , (9.6)

it is clear that this solution can be used to determine definite values of k,
and L, by fitting to experimental resultn or calculations, and thus the form
of the solution (94) to (9.6) involves inherently some definition of a
particular Li, different from the precise definition of L used in the
hypothesis of ovation 6.

Z3.



Since equation (9.5) is identical with (8.1), the fitting of this solution to
the &am set of observations ahould Ave the &ame value for kl as obtained In
section & for kL.

For oomparison, some values of kL I obtained by Kirb"od ard Brinkley a
both by choosing the initial data of their Polution to fit experimental data,
and bor ohoosing initial data from the thermodynwio properties of the
explosive, are quoted here.

Reference 2. 1 lb. Cast Pentolite
From peak overpressure solution OCLM . 8.73 ft!

(LI a 8.09 ft., R 0.365)
From positive impulse solution OIL! - 8.53

Reference 2. 1 lb. Torpex II
Prom peak overpressure solution k*,L* - 9.21 ftf

(L, a 8.32 ft., ki, a0.365)
Prom positive Impulse solution kL, - 8.85 ft:

Referenoe 17. 1 lb. TNT
Prom positive impulse solution k,L, - 7.97
From positive overen-esau-e solution kL; u 7.96

(LI a 8.41 ft., kiU=.335)

Reference 18. 1 lb. TN
Prom positive impulse solution k~aL'a - 7.50
Prom positive overpressure solution k" LI a 7,49

(L, a 8.14 ft., k,= 0.336)

(0) It has frequently been suggested that a blast wave may ultimatel3y tend to
the form of an N-wave with a second shook about equal in strength to the
leading shook. The development given here suggests, on the other hand, that
no conclusions can be drawn about the air motion behind the limiting
charaoteriatic, on the strength of the governing equations and leading
boundary conditions only. Experiment L5,6) shows that the shook orresponding
to the second leg of the N is consistently very mauch weaker than the leading
shook. In the case of a conventional explosions moreover, the second leg of
the N is the third shock, and the shock next behind the leading shook is

ruhyin the middle of the sloping part of the N. It is this second shook
Which [of. 7,8) originates at the surface of the explosive and in reflected
outwards again after Implosion at the oentre. This type of shook is peculiar
to conventional explosives, and consequent upon the infinite pressure gradient
immediately behind a spherical detonation wave,

It is the author' s opinion that secondary shocks are not essential to the
ultimate forms of blast waves, and that their presence or absence is dependent
on the nature of the explosion, or, more precisely, on the motion of the
'explosive products' which act like a piston in causing the explosion. As
remarked above, the second shock from a conventional explosive is peculiar to
this type of explosive. In atomic explorionm no secondary shook is observed
at all [15, page 50, footnote]. The author believes that, if an explosion
were caused by a spherical piston which returned to its initial position, a
true N-'a're would ultimately form, just as, in the corresponding case of a
finite body in steady supersoni, flow, the bow arl tail shocks ultimately f~ru
an N-'vave far out from the body. In this latter case, the shape of the bo6r
determines the 'piston curve', which, when the body is finite, returns to its
initial position.

Ackrowledf,.nts

The author is greatly indebted to Dr. A. Coons for extensive checking
and emendation of the manuscript, and discussion of nmazv details in the
presentation.

24.



ONFIDErTIAL/DI SCREET

References

i. H. A. Bethe. Shook hydrodynamion and blast waves. Chapter 10.

AECD Report No. 2860, October 1944.

2. 3. G. Kirkwood and S. R. Trinkley. Theory of the propagation of shook

waves from explosive sources in air and water. 0SRD Report No. 481k,

March 495: Physical Review 21 9, May 1947.

3. G. B. Whitham. The propugation of splerioal blast. ProO. Roy. So.

A 203 p.571, 1950.

4. Compressible Airflow: Tables. Clarendon Press, 1952.

5. R. Potter and C. V. Jarvis. An experimental study of the blast wave

from a spherical charge of T11T. A.W.R.E. Report No. 0-4/55.

6. R. Potter and C. V. Jarvia. An experimental studY of the blast wave

from a spherical charge of RD7/TNT 60/0. A.W.R.E. Report No. 0-1.V5.

7. F. J. Berry, D. S. Butler and M. Holt. The initial propagation of
spherical blast. A.R.E. Report No. 3/5 or Proo. Roy. Soc. A 227

pp. 258-270, 1955.

8. P. Weoken. M m. 14 m. Laboratoire des Recherches de St. Louis. 1951.

9. F. G. Friedlander. Proo. Roy. So. A 186 pp. 322-344., oriinally
issued t, Royal Society, July 1941.

/10. C.K. Thornhill. On the general scaling laws for explosions from

stationary and moving charges. A.R.D.E. Report No. (B) 1657.-o

11. W. G. Penney. On the development of suction behind the blast wave in

air, and the energy dissipation. Ministry of Home Security, Civil

Defence Research Ocmittee Report RO. 26), October 1941.

12. G. B. Whitham. On the prop&gation of weak shook waves. Journal of
Pluid Mechanics, 1-3, p. 290, September 1956.

13. R. G. Sachs. The deperenoe of blast on ambient pressure and
temperature. B.R.L. Reort No. 466, May 1944.

14. G.I. Taylor. The formation of a blast wave ta an intense explosion.

Ministry of reme Security R~port RO. 210, June 1915 mabsequently

Proc. Roy. Boo. A 201 p. 159, March 1950.

15. The effects of atomic weapons. McGraw Hill Book Compary Incorporated,

1950.

16. C. K. Thornhill. A unified theory of damage from minor external blast.
A.R.D.E. Report (B) 24/57.

17. S. R. Brinkley and J. G. Kirkwood. Tables and graphs of the

theoretical peak preson rs, energies and positive impulses of blast
waves in air. O.S.R.D. Report No. 5137, May 1945.

18. J.o G. Kirkwood and S. R. Drinkley. Theoretical blast wave curves for

cast TWT. O.S.R.D. Report No. 5%81, August 1945.

25.

COND ITA/DISCREff



-h m

d P"- W%

N U
S S

LHH

YN 0- N -

0 N N

0Y 00 0D UN W Y

90 q l4

W% N q- 0 0 0 0 0 4 0 0 . o

U' N N 0 o d . - 'Q E

"S"

- - - - --- - -

U~i26



Itg

r%. r%

IIf

a LI a -

01

as 4 N w 0 



LealinC

ShooI-

() / / /Liting
positive
oharmoteriatio

A/

B/ /

/V

0

UNC1A0S0!



-V CONCI% SSNI Wil

. .........

.I.I....1Io
-~.jiiM

4111 1L

coa

N N ... .... ..

60 ! d

.. ..... ...
U LI II IIII II - ..... ... ...

LLL1~.~ I t...



09- oF. %a % 4

-- 11

4.1

-~~rr~1-.

___T

i1UCIA8IFIE



[~ds

[dstl] ;'o:/,- i ''4wi),

Defense Technical Information Center (DTIC)
8725 John J. Kingman Road, Suit 0944
Fort Belvoir, VA 22060-6218
U.S.A.

AD#: AD0151303

Date of Search: 17 Jun 2009

Record Summary: DEFE 15/996
Title: Ultimate distribution of energy in spherical explosion
Availability Open Document, Open Description, Normal Closure before FOI Act: 30 years
Former reference (Department) Report No (B) 27/57
Held by The National Archives, Kew

This document is now available at the National Archives, Kew, Surrey, United
Kingdom.

DTIC has checked the National Archives Catalogue website
(http://www.nationalarchives.gov.uk) and found the document is available and
releasable to the public.

Access to UK public records is governed by statute, namely the Public
Records Act, 1958, and the Public Records Act, 1967.
The document has been released under the 30 year rule.
(The vast majority of records selected for permanent preservation are made
available to the public when they are 30 years old. This is commonly referred
to as the 30 year rule and was established by the Public Records Act of
1967).

This document may be treated as UNLIMITED.


